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ABSTRACT
The most researched elastomer in recent years is polydimethylsiloxane (PDMS), which has 
several uses in various engineering industries. One of the PDMS’s key characteristics is its 
hyper-elasticity nature, which enables the production of sensors, flexible electrical circuits, 
transducers, and antennas. This study used the hyper-elastic constitutive models to predict the 
mechanical behavior of incompressible, isotropic, and hyper-elastic material PDMS under 
uniaxial tension. These models are curve-fitting tools that consist of strain energy density and 
stress functions. To pursue the analysis, a new formulation of PDMS substrate was proposed, 
and a tensile test was performed to evaluate its stress-strain behavior. The experimental data 
was implemented on various hyper-elastic models using Abaqus, like Mooney-Rivlin, Yeoh, 
Ogden, and reduced polynomial models. The goodness of fit of every model was evaluated 
by calculating R2 values. Consequently, among these models, the reduced polynomial model 
with 6 material constants possessed the highest R2 value (0.9936) and was considered the 
best-fit model among the other models. Furthermore, the material constants of this model 
were applied to the 3D dumbbell-shaped model of PDMS in Abaqus for its validation. The 
boundary conditions were applied on the model similar to the experimental setup, as 33 mm 
displacement on one end and the other was fixed with all DOF. For mesh quality and mesh 

sensitivity of the material, various mesh 
sizes with the linear formulation (C3D8RH) 
were utilized, and the best mesh size was 
selected to evaluate very close results with 
the experimental. 

Keywords: Characterization of material, FEM 
analysis, hyper-elastic material models, material 
parameters, polydimethylsiloxane 
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INTRODUCTION

Recently, the most popular building material of the siloxane family is polydimethylsiloxane 
(PDMS). Much work has been done on the applications of PDMS based on its several 
characteristics and properties like flexibility, elastomeric properties, high chemical 
resistivity, gas permeability, optical transparency (Izdihar et al., 2021; Martin & Bhushan, 
2017), corrosion resistance, bio-compatible (Hassler et al., 2011), thermally stable and 
viscoelastic nature (Roh et al., 2016). It can easily mold into any shape and is cheaper than 
other elastomers. In addition, PDMS is non-toxic, non-flammable, and inert. It has a large 
variety of applications in mechanical, electrical, electronics and biomedical fields (Jewkes et 
al., 2018) such as stretchable electronic circuits (Zulfiqar et al., 2020; Zulfiqar et al., 2021), 
mechanical & electrochemical sensors (Casanova-Moreno et al., 2017), robotics, micro-
fluid channels (Akther et al., 2020; Bashirzadeh et al., 2018) and Micro-electromechanical 
systems (MEMS)/Nano Electro-Mechanical System (NEMS) (Yu & Zhao, 2009).

PDMS, a rubber-like hyper-elastic material, is characterized by low elastic and high 
bulk modulus. The hyper-elastic materials possess large elastic strain and deformation 
under small volumetric changes. These materials are generally incompressible and do not 
obey Hooke’s law, but they retain excellent energy absorption properties. The mechanical 
behavior of hyper-elastic materials can be characterized by implementing two methods: 
experimental and numerical simulation (Aziz et al., 2020; Íñiguez-Macedo et al., 2019; 
Sugihardjo et al., 2018; S Zulfiqar et al., 2022). Hence, several tests are available for the 
mechanical characterization of PDMS, such as tensile, fatigue, and creep tests (Doan & 
Mertiny, 2020; Martins et al., 2010).

Universal Tensile Machine (UTM) is used for different tensile tests. However, for 
rubber-like materials, ASTM D412 Type C standard (ASTM D412-16, 2021) is opted to 
make samples. The dog bone-shaped sample is fixed in the two holding grips of the machine 
in which one side is fixed, and the other is movable, having incremental displacement. 
This test’s main objective is to determine a material’s elastomeric properties. From this 
approach, the more realistic results with higher accuracy are obtained. On the other hand, 
using numerical software, like Abaqus, Ansys, and SolidWorks, has become more trending 
(Ribeiro et al., 2018; Souza et al., 2020; Xue et al., 2016). Several hyper-elastic material 
models for incompressible and isotropic materials, based on the experimental stress-strain 
data (uniaxial and biaxial) have been proposed in the last 80 years (Anssari-Benam & 
Bucchi, 2021; Beda, 2007; Bien-aimé et al., 2020; López-Campos et al., 2019; Nunes, 
2011; Sattarian & Ghassemi, 2019; Tansel et al., 2020) that give better agreement with 
uniaxial tensile test data and pure shear data (Beda & Chevalier, 2003; Pucci & Saccomandi, 
2002). The popular hyper-elastic material models based on classical Gaussian law (Boyce 
& Arruda, 2000; Meissner & Matějka, 2002; Wineman, 2005) are Neo-Hookean, Mooney-
Rivlin, Yeoh, and Ogden models. The selection of these models depends on experimental 
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data and working strain range such as Neo-Hookean 30%, Mooney-Rivlin 30% compression 
& 200% tension, and Ogden up to 700% or more (Faghihi et al., 2014; Gonzalez et al., 
2008; Kim et al., 2012; Yu & Zhao, 2009).

The main objective of this study is to characterize the mechanical behavior, in terms 
of modulus of elasticity and strength, of the proposed PDMS substrate by implementing 
uniaxial tensile test data on Mooney-Rivlin, Ogden, Yeoh, and reduced polynomial models. 
The uniaxial tensile test is done to calculate the elastic modulus and tensile strength of the 
PDMS substrate. Based on stress-strain experimental results, the most suitable constitutive 
model is selected to simulate the behavior of PDMS further. Finally, FEM analysis is 
carried out in Abaqus/CAE software to validate material characterization using the material 
parameters of selected hyper-elastic models on a 3D dumbbell-shaped model under the 
same boundary conditions used in uniaxial tensile testing. The accuracy of simulated results 
will be improved by mesh sensitivity and mesh quality analysis.

HYPER-ELASTIC CONSTITUTIVE MATERIAL MODELS

The mechanical behavior of hyper-elastic materials is calculated by FEM analysis. The 
accurate constitutive material model is selected to reproduce the non-linear hyper-elastic 
behavior of a material. The hyper-elastic models are categorized into two types of models: 
micro-mechanical and macro-mechanical models. Micro-mechanical models work on the 
methodology of unit cells and manufactured by using different chemicals, while on the 
other hand, macro-mechanical models study the material’s behavior on an experimental 
data basis. The tensile test is very important for macro-mechanical models to get the 
experimental data.

Hyper-elastic material models determine the non-linear behavior of hyper-elastic 
materials like elastomers and rubbers. These models do not work under simple Hooke’s law 
and have a non-linear stress-strain relationship. The hyper-elastic materials are considered 
to be isotropic and incompressible and have the capability to come to their original shape 
after unloading, and their flexibility is independent of strain rate (Ali et al., 2010). Such 
materials also have non-linear mechanical properties under high strain rates. The theory of 
hyper-elastic materials is defined as a function of strain energy or Helmholtz free energy. 
Helmholtz free energy measures the work output in the closed thermodynamics system 
under constant volume and temperature (Wriggers, 2008). The strain energy function plays 
a very important role in developing a hyper-elastic model by assuming different shapes 
based on the type of material used. It is also known as the stored energy function obtained 
by considering thermodynamics and symmetry (Wriggers, 2008). Mathematically, for 
isotropic and incompressible materials, the strain energy (W) function depending on three 
strain invariants is W = f (l1, l2, l3). The strain invariants in terms of principal stretches (λ) 
are given as Equations 1–3:
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For incompressible materials, the strain energy function can be written in terms of 
deviatoric strain energy (Wd) and volumetric (Wv) strain energy, as given in Equation 4. 
Hence, the general strain energy (W), stress (σ), and stretch ratio (λ) equations are expressed 
in Equations 5–7.

𝑊𝑊 = 𝑊𝑊𝑑𝑑(𝐼𝐼1, 𝐼𝐼2) + 𝑊𝑊𝑉𝑉(𝐽𝐽) 

𝑊𝑊 = � 𝐶𝐶𝑖𝑖𝑖𝑖 (𝐼𝐼1 − 3)𝑖𝑖(𝐼𝐼2 − 3)𝑖𝑖
𝑁𝑁

𝑖𝑖+𝑖𝑖=1
+ �

1
𝐷𝐷𝑘𝑘

(𝐽𝐽 − 1)2𝑘𝑘
𝑁𝑁

𝑘𝑘=1
 

𝜎𝜎 = 𝜆𝜆𝑖𝑖
𝛿𝛿𝑊𝑊
𝛿𝛿𝜆𝜆𝑖𝑖

− 𝑝𝑝𝐼𝐼 

𝜆𝜆𝑖𝑖 = 1 + 𝜀𝜀𝑖𝑖 = �𝐿𝐿𝑖𝑖 𝐿𝐿𝑜𝑜� �
𝑖𝑖
 

 

   [4]

          [5]

          [6]

          [7]

Where J is the Jacobean determinant, C ij and D k are material constants. In the case of 
incompressible materials, J = I 3 = detF = 1 and hydrostatic pressure (p) are negligible, so 
Equations 5 and 6 are reduced to Equations 8 and 9, respectively.
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Further, the simple stress equation for hyper-elastic deformation behavior in uniaxial, 
equi-biaxial, and pure shear extension are expressed in Equations 10-12 (Bien-aimé et al., 
2020). In case of uniaxial, 𝜆𝜆2 = 𝜆𝜆3 = 1 √𝜆𝜆⁄  .
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Mooney-Rivlin Model

Mooney-Rivlin model is a phenomenological type model that gives better convergence 
for a relatively large deformation rate than the Neo-Hookean model (Guo & Sluys, 2006). 
It is the extension of the Neo-Hookean model, which provides more accurate results. The 
Mooney-Rivlin model is limited to the uniaxial loading and does not work under biaxial 
or shear and complex loadings. This model has different forms based on the number of 
parameters, namely material constants. The selection of a number of parameters of this 
model depends on the type of stress-strain curve (Guo & Sluys, 2006). The general form 
of strain energy function (W) of the Mooney-Rivlin model is given in Equation 13, and the 
uniaxial stress (σuniax) with N number of material constants (C ij) is defined in Equation 
14 for incompressible materials.
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Ogden Model

The Ogden material model is chosen to describe the non-linear behavior of complex 
materials like polymers, rubber, and tissues. It usually works under a larger deformation 
strain rate of up to 700%. The strain energy and uniaxial stress functions are generally 
expressed by Equations 15 and 16, respectively. 
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Where W  is the strain energy density function, N  is the number of terms in series, λi  (i 
= 1,2,3) is deviatoric principal stretches, μi, and αi are temperature dependent material 
constants.

Yeoh Model

The most appropriate model used for incompressible materials is the Yeoh model because 
it only involves a third-order polynomial with I 1 dependence (first invariant deformation). 
It also produces more accurate results than the Neo-Hookean model due to its higher-order 
first invariant terms. However, it is very difficult to determine the dependence of Helmholtz 
energy on second or more invariant deformation terms. Therefore, Yeoh neglected I 2 and 
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higher-order terms. This model is also known as a reduced polynomial model (N=3), and 
for incompressible materials, the strain energy function and uniaxial stress can be expressed 
in Equations 17 and 18, respectively.
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Polynomial and Reduced Polynomial Model

A phenomenological model of rubber elasticity is the polynomial hyper-elastic material 
model. The elastic characteristics of compressible materials can also be described using 
this approach. It is also a general form of the Neo-Hookean, Mooney-Rivlin, and Yeoh 
hyper-elastic models and can be extended up to six orders. The polynomial model’s strain 
energy density function is defined in Equation 5 (Ju et al., 2014). The strain energy equation 
becomes the Mooney-Rivlin model for N – 1, and the incompressibility factor equals zero. 
However, if all the C ij parameters are equal to zero except j  ≠ 0 , then the final form of the 
polynomial hyper-elastic model is converted to a reduced polynomial hyper-elastic model. 
The strain energy equation is reduced to the general form of the Yeoh model (Equation 17). 
The respective uniaxial stress equation of this model is given in Equation 19.

σuniax = 2[C10 + 2C20 (I1 – 3) + 3C30 (I1 – 3)2 + 4C40 (I1 – 3)3 + 5C50 (I1 – 3)4 6C60 (I1 – 3)5]
          [19]

MATERIALS AND METHODS

Materials and Sample Preparation

The properties and functions of these materials are illustrated in Table 1: Poly(dimethylsiloxane) 
hydroxyl-terminated (PDMS-OH), fume silica, (3-glycidyloxypropyl) trimethoxysilane 
(ETMS), toluene, and dibutyltin dilaurate (DBDTL). 

The substrate was prepared using PDMS-OH (hydroxyl terminated) as a base polymer 
and (3-glycidyloxypropyl) trimethoxysilane (ETMS) as cross–linking agent in a ratio of 
33:1 (33 parts base polymer and 1 part cross-linking agent). The base polymer was mixed 
with a viscosity controller (fume silica) and solvent (toluene) for 30 minutes. After that, 
ETMS was added and mixed for the next 10 minutes. Finally, DBDTL catalyst was mixed 
into the solution to boost the reaction. The solution was then poured into a rectangular 
mold to get the rectangular-shaped sheet after curing for 24 hours at room temperature. 
The three samples of cured PDMS sheets were cut into dumbbell shapes of ASTM D412 
Type C standard (Figure 1).
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EXPERIMENTAL AND CURVE 
FITTING OF HYPER-ELASTIC 
MODELS

PDMS samples were subjected to uniaxial 
tensile testing under a 10 mm/min loading 
rate and 10 kN load cell at room temperature. 
The test samples were gripped at the two 
ends with 33 mm length. The modulus of 
elasticity was obtained from the stress-strain 
curve at small strain values where stress is 
directly proportional to the strain (validate 
Hooke’s law). Figure 2 shows the non-linear 
behavior of PDMS substrate in uniaxial 
tensile testing.

The engineering stress-strain data was 
introduced into Abaqus/CAE software to 
perform the FEM analysis and curve fitting 
of material (Ali et al., 2010; Subhani & 
Kumar, 2009) using different built-in hyper-
elastic models such as Mooney-Rivlin, 
Yeoh, Ogden, and reduced polynomial. The 

Table 1
Materials with their properties and functions 

Materials Function Properties
PDMS-OH Epoxy resin (binder) Mol. wt.: 110×103 g/mol

Viscosity: 50×103 cSt
Fume silica Viscosity controller Particle size: 5–50 nm

Specific gravity: 2.2–2.3 g/ml
Toluene Organic solvent Mol. wt.: 92.14 g/mol

Purity: 99%
Density: 0.867 g/ml

ETMS Cross-linking agent Mol. wt.: 236.34 g/mol
Purity: ≥ 98%
Specific gravity: 1.07 g/ml

DBDTL Catalyst Mol. wt.: 631.56 g/mol
Purity: 95%
Density: 1.066 g/ml

Figure 1. PDMS sample based on ASTM D412 type 
C standard

Figure 2. Engineering stress-strain curve of uniaxial 
tensile data of PDMS material
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R2 must be obtained as 1 or very close to 1. However, the general formula for calculating 
R2 is given in Equation 20.

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑖𝑖 ,𝑒𝑒𝑢𝑢𝑝𝑝 − 𝑌𝑌𝑖𝑖 ,𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚 �

2𝑢𝑢
𝑖𝑖=1

∑ �𝑌𝑌𝑖𝑖 ,𝑒𝑒𝑢𝑢𝑝𝑝 − 𝑌𝑌𝑖𝑖,𝑒𝑒𝑢𝑢𝑝𝑝��������2𝑢𝑢
𝑖𝑖=1

       [20]

The parameters used in Equation 20 are defined as n is the total number of data points, 
I represent the integer values from 1 to n, Y exp demotes the experimental stress values 
w.r.t. the stretch ratio (λexp), Y exp  is the average value of experimental stress data, and 
Y model gives the stress values obtained by curve fitting of hyper-elastic model w.r.t. the 
stretch ratio (λmodel).

According to Figure 3, the reduced polynomial (N = 6) hyper-elastic model shows 
stability for all strain values and volumetric data, whereas the other hyper-elastic models 
are not stable under small and large deformations with the particular uniaxial tensile test 
data. Hence, the material coefficients and accuracy of respective hyper-elastic constitutive 
models obtained by curve fitting analysis are listed in Tables 2 and 3.

From Tables 2 and 3, it can be seen that the lowest coefficient of determination value 
(R2), i.e., 0.8991, was obtained by using Mooney-Rivlin (N = 2), while the highest R2 value 
using a reduced polynomial model with 6 number of material constants was calculated 
as 0.9963. This value explained the accuracy of the hyper-elastic model w.r.t. to the 
experimental test data. Thus, based on its accuracy and curve fitting graph, the reduced 
polynomial hyper-elastic model was selected as the best fit hyper-elastic model (Figure 3). 

Figure 3. Curve fitting of experimental tensile data for PDMS material using different hyper-elastic 
constitutive models
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Table 3 
Material constants and accuracy of the Ogden model 

FE Model
Material Constants

R2

μ1  (MPa) μ2 (MPa) μ3 (MPa) α1 α2 α3

Ogden (N = 3) 0.347 -0.149 -0.194 1.998 2.269 1.698 0.9814

Table 2 
Material constants and accuracy of Mooney-Rivlin, Yeoh, and Reduced Polynomial models 

FE Models
Material Constants [Cij, MPa]

R2C10 C20 C30 C40 C50 C60 C01

Mooney-
Rivlin 
(N = 1)

3.65×10-3 - - - - - -1.44×10-3 0.8991

Yeoh 
(N = 3) 2.45×10-3 1.61×10-4 -7.83×10-6 - - - - 0.9474

Reduced 
Polynomial 
(N = 6)

1.94×10-3 8.20×10-4 -1.65×10-4 1.57×10-5 -7.18×10-7 1.28×10-8 - 0.9963

NUMERICAL ANALYSIS AND VALIDATION OF BEST FIT HYPER-
ELASTIC MODEL

In this study, the numerical analysis was simulated initially by considering only the elastic 
region of the specimen. The goal of employing PDMS’ elastic characteristics in FEM 
simulation was to acquire strain values in the elastic area. A 3D dumbbell-shaped model 
based on the ASTM D412 type C standard was developed, as shown in Figure 4.

The material properties of PDMS were implemented on the above model. These properties 
include modulus of elasticity as 0.48 MPa and Poisson’s ratio as 0.499. The material constants 
of reduced polynomial (N=6), such as C10 = 0.00194, C20 = 0.00082, C30 = –0.000165, C40 = 
1.57 × 10–5, C50 = –7.18 × 10–7 and C60 = 1.28 × 10–8, were chosen based on its high accuracy 
value than the other hyper-elastic models. The element type 8-node linear brick, hybrid 
formulation, constant pressure, reduced integration, and hourglass control (C3D8RH) opted 

Figure 4. 3D model for PDMS material as per ASTM 
D412 type C standard
Note. Dimension unit in mm

for meshing. After meshing, the boundary 
conditions, as per uniaxial tensile testing, 
were set as all degree of freedom (DOF) 
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of the model in the x-direction. There would be no displacement in the other two directions, 
i.e., the y and z directions were fixed (Uy = Uz = 0). The boundary conditions and meshing 
of the proposed parametrized FE model of PDMS material are depicted in Figure 5. 

In the C3D8RH element type, the pressure or stress is considered an independent 
interpolated solution variable connected with displacement solution via constitutive theory 
(Shahzad et al., 2015). The mesh sensitivity analysis for the uniaxial tensile test was 
investigated upon establishing the FE model. This analysis aims to determine the ideal 
element size, type, and numerical formulation to get good results with the least computational 
work. Different mesh sizes, such as from 2 mm to 0.5 mm of linear formulation, were 
utilized to evaluate the stress-strain values of the PDMS model along the x-direction. The 
simulated stress-strain values were then compared with the experimental values to validate 
the best-fit hyper-elastic model with the respective mesh size. To determine the quality 
and convergence of mesh size for the simulated results with experimental data, the mean 
absolute error (MAE) against each mesh size (Martinez et al., 2018; Gómez et al., 2017; 
Lorza et al., 2017) was calculated using Equation 21.

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑘𝑘
��𝑌𝑌𝑚𝑚 ,𝑒𝑒𝑢𝑢𝑝𝑝 − 𝑌𝑌𝑚𝑚 ,𝐹𝐹𝑀𝑀�
𝑘𝑘

𝑚𝑚=1

       [21]

Where k represents the total number of stress-strain data points with m = 1,2,3, ... , k 
integers. The experimental and FE stress values with m  number of points are denoted by 
Y m,exp, and Y m,FE, respectively. 

In addition, the mesh quality enhancement of different mesh sizes is a significant issue 
for various real-world problems. The results obtained after simulation can be affected by 
the analysis of the element quality of the mesh. There are variable methods used to improve 

Figure 5. 3D dumbbell-shaped model of PDMS material: (a) Meshing; and (b) boundary conditions

(a)

(b)

Fixed support
U x =U y = U z = 0
R x =R y = R z = 0

Displacement
U x = 33 mm

the quality of mesh sizes, such as aspect 
ratio (Parthasarathy & Kodiyalam, 1991), 
Jacobean ratio, and maximum/minimum 
angles (Chen et al., 2003; Dassi et al., 2016; 
Ma & Wang, 2021). This research examined 
the aspect ratios of all the mesh sizes, i.e., 
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from 2 mm to 0.5 mm, to determine the mesh quality factor. The aspect ratio is, however, 
defined as the ratio of the longest edge and the shortest normal dropped from a vertex to 
the opposite face of the element. A good quality mesh must possess an aspect ratio value of 
less than 5 for the majority of its elements, i.e., equal to or greater than 90% (SYSTEMES, 
2021). The high aspect ratios are related to the greater discrepancies of the FE modeling 
and negatively influenced the convergence of the simulation results. Maintaining the ideal 
aspect ratio value of 1 for complicated geometries is impossible. Therefore, the modest 
values of aspect ratios can be retained in the crucial regions of the domain to ensure the 
fidelity of the simulated results. To highlight the elements with an aspect ratio larger than a 
certain value, the user must set a criterion in the Verify Mesh tool of Abaqus. Nonetheless, 
the two aspect ratios greater than 10 and greater than 3 were chosen for the mesh quality 
analysis of different mesh sizes of the PDMS material. 

Besides, the simulated stress-strain values of the reduced polynomial hyper-elastic 
model were acquired in the natural logarithmic scale. The obtained stress-strain data were 
converted into engineering stress-strain using Equations 21 and 22 to compare with the 
experimental data. However, Table 4 shows the simulated engineering stress-strain values 
at different mesh sizes along with the respective number of nodes, elements, computational 
cost, aspect ratios, and MAE  error.

𝜎𝜎𝑡𝑡𝑒𝑒𝑢𝑢𝑒𝑒 = 𝜎𝜎𝑒𝑒𝑢𝑢𝑒𝑒 𝑒𝑒𝜀𝜀𝑡𝑡𝑒𝑒𝑢𝑢𝑒𝑒 = 𝜎𝜎𝑒𝑒𝑢𝑢𝑒𝑒 (1 + 𝜀𝜀𝑒𝑒𝑢𝑢𝑒𝑒 ) 

𝜀𝜀𝑡𝑡𝑒𝑒𝑢𝑢𝑒𝑒 = ln(1 + 𝜀𝜀𝑒𝑒𝑢𝑢𝑒𝑒 ) 

 

     [21]

          [22]

The parameters in Equations 21 and 22 are as follows: σtrue gives the true stress 
values, σeng represents the engineering stress, and εtrue and εeng denote the true strain and 
engineering stress values, respectively.

It is worth noticing from Table 4 that by decreasing the mesh sizes from 2 mm to 0.5 
mm, the number of nodes and elements increased, which provides the stress-strain simulated 
results very close to the experimental results. The accuracy of the results increased by 
increasing the number of nodes and elements, but the main purpose of meshing was to 
validate the stress-strain data of the best-fit hyper-elastic model with the experimental data. 
0.6 mm and 0.5 mm mesh sizes possessed the lowest MAE  of 0.049% than the other mesh 
sizes, but it is not enough to select the mesh size based on MAE  only. Therefore, other 
factors such as aspect ratio and computational cost are also very important in choosing the 
best mesh size for PDMS material. For this purpose, 0.8 mm mesh size exhibited the lowest 
aspect ratio of 1.93 with the acceptable MAE  (0.053%) and computational cost of 331 
seconds. The maximum von Mises engineering stress and strain were obtained at 0.8 mm 
as 0.009890 MPa and 0.783718, respectively. Consequently, these simulated stress-strain 
values agree with the experimental stress (0.011140 MPa) and strain (0.78450). Based on 
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these results, a 0.8 mm mesh size of C3D8RH linear formulation was opted to validate 
the best-fit hyper-elastic model, i.e., reduced polynomial (N  = 6). Thus, the contour plots 
of von Mises true stress and maximum principal true strain along x–the direction for the 
particular mesh size and element type are illustrated in Figure 6. 

According to the contour plots, the maximum variation in stress and strain occurred at 
the necking of the 3D dumbbell-shaped model of the PDMS material because the boundary 
conditions with 33 mm gauge length, were applied simultaneously at the two ends of the 
sample, i.e., 33 mm displacement along x-direction at one end and all degree of freedom 
fixed on another end. 

Table 4 
Various mesh sizes with aspect ratio and mean absolute error of PDMS 

Mesh 
Size 
(mm)

Nodes Elements Computational 
cost (sec)

Aspect 
Ratio

Max. von Mises 
engineering stress 

(MPa)

Max. principal 
engineering 

strain
MAE (%)

2.0 1026 448 27 2.23 0.009081 0.728519 0.082
1.8 1560 704 44 2.21 0.009154 0.733456 0.075
1.6 2064 935 56 2.01 0.009537 0.759615 0.063
1.4 2790 1288 71 2.15 0.009647 0.767076 0.061
1.2 3328 1545 78 2.29 0.009679 0.769281 0.060
1.0 6840 4284 215 2.18 0.009794 0.777118 0.058
0.8 10296 6510 331 1.93 0.009890 0.783718 0.053
0.7 12600 8016 419 1.99 0.009968 0.789038 0.053
0.6 24480 17661 1026 2.0 0.010043 0.794167 0.049
0.5 33740 24480 1870 1.94 0.010110 0.798581 0.049

Figure 6. Contour plots of the Reduced Polynomial (N  = 6) model: (a) Simulated true strain; and (b) 
simulated true stress
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CONCLUSION

In this work, the mechanical behavior of PDMS was characterized through uniaxial tensile 
test and hyper-elastic material models. The uniaxial tensile test data obtained by UTM was 
imported into Abaqus, and curve fitting for different hyper-elastic material models was 
carried out. Among these hyper-elastic models, the reduced polynomial (N  = 6) model was 
the most adequate solution for fitting the maximum points of experimental data according 
to the evaluation of the coefficient of determination (R2) value of every hyper-elastic 
model. However, the reduced polynomial model exhibited the highest R2 value (0.9963) 
than others. The FE simulation was then conducted on the PDMS sample to validate the 
reduced polynomial model. For this purpose, the analysis was carried out under the same 
boundary conditions as in the experimental analysis, i.e., fixed all DOF at one end, and 33 
mm displacement was applied on the other end along the x-direction. The material constants 
of the best-fit hyper-elastic model were implemented on the 3D model. The simulation 
used different mesh sizes (2 mm to 0.5 mm) of C3D8RH linear formulation element type. 
The accuracy of the simulated results was improved by performing mesh quality analysis 
in terms of aspect ratio, and the MAE error of every mesh was also calculated. Based 
on these criteria, 0.8 mm mesh size possessed the lowest MAE error (0.053%) with 331 
seconds computational cost and the lowest aspect ratio of about 1.93 than other mesh 
sizes. Consequently, the stress-strain data of the reduced polynomial model with 6 material 
constants agreed with the experimental stress-strain data points. Thus, this model can better 
fit the test and simulated data with the same boundary conditions. The results of numerical 
simulation might be different from experimental values if the displacement and thickness 
values of the material change.
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